Andrew Mackenzie, Prof. Dr.
    Phone: +49 351 4646-5900
    Fax: +49 351 4646-5902
    Phil King, Dr.
    Phone: +44 (0)1334 463067
    Fax: +44 (0)1334 463104

    Mesoscopic correlated electron and topological physics

    In recent years it has become possible to use focused ion beam and electron beam techniques to bring ultrapure single crystals of novel correlated electron and topological materials into mesoscopic regimes in which the sample size is similar to one or more of the characteristic length scales (e.g. mean free path, magnetic length, superconducting coherence length or penetration depth) that define their physics [1]. Importantly, our group has demonstrated that this can be done without significant damage to the bulk of the miniaturised samples [2]. This is largely unexplored territory; although the physics promises to be extremely exciting, it requires a substantial investment in equipment in order to be competitive.  At MPI CPfS we have made such an investment, and have just commissioned a comprehensively equipped clean room specially designed for this class of research. We will be offering a number of projects in this area, covering investigation of topological effects in metals [3], hydrodynamic electronics [2], unconventional superconductivity and more. There will also be opportunities to perform research close to chemistry, since the starting materials need not be crystals grown from a liquid but could be crystallites from samples prepared using solid state chemical routes. New clean rooms have also been built in St Andrews, offering the possibility of collaborative research and interchange of expertise and ideas. 

    [1] P.J.W. Moll, R. Puzniak, F. Balakirev, K. Rogacki, J. Karpinsky, N.D. Zhigadlo and B. Batlogg, Nature Materials 9, 628 (2010)
    [2] P.J.W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, A.P. Mackenzie, Science 351, 1061 (2016)
    [3] P.J.W. Moll, N.L. Nair, Tony Helm, A.C. Potter, I. Kimchi, A. Vishwanath and J.G. Analytis, Nature 535, 266 (2016)

    loading content